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ABSTRACT

A besic conical element subjected to axisymmetric linearly varying
temperatures on the inner and outer surfaces is solved for intemmal

stress and compatible edge loading and deformation. Unlqueness of

the result is proven.

Descriptors

Cones
Thermel Stress
Elasticity

Shells
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NOTATION

Temperature

Temperature difference

Mean temperature

Coordinate distance from apex
Half opening angle of cone
Thermal constants

Meridian angle change

Normal displaceument

Axial stress resultants in meridional
and circumferentiel directions
Stress moment resultants in
meridional and circumferential
directions

Coefficient of thermal expansion
Poisson's ratio

Young's modulus

Thickness of come
Bending rigidity

Principal radius of curvature in
circumferential direction
Angle between shell normel and

cone axis

(degrees Fahrenheit)

( " " )
( " " )
(in.)

(degrees)

(degrees Fahrenheit)
(dimensionless)

(in.)

(1b/1n.)

(1b.in./in)
(1n/1a/°F)
(@imensionless)
(1b./1n7)

(in.)

(1v.in.)




NOTATION

U =—i5{;;@-’—-—224~p - Stress function (1b./1n.)
Y= &)
SEN A
x = 2255 - Coordinate transformation
>\q = %M\'@ - Parameter

F.G,H, T - Constants
E s LY -2 ) = A LG

Y= (LY e = \'~iL )
Pl

C: - Constant of integration = 1,8

KX« Horizontal shear (1v./ inﬂ)
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SOLUTION SUMMARY
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As B AS
Ml D - S-;_ ATI-o 5‘ ATl

tAs E As
Edge Loads
o (1) C M = i (14 v) (A pr Cs D)
C‘m@ ’
Edge deformations
— K As IZL/A,F - = OLQ/-:\ S‘L‘Dm/‘,}
Internal Stress resultants
=4 Ny = —akK(i+v) CTan g
Mg = u\<(\+u)§/\m@+c3+o)




INTRODUCTION

? The solution of thermel stress in an arbitrary thin shell of revolution

subjected to an axisymmetric temperature distribution specified om the
inner and outer surfaces of the shell may be solved by the cone coupling
technique developed in SM-38500, "Analysis of & Shell by the Truncated
Cone Approximation” by M. B. Harmon, provided that a rigorous solution
of en individual conical element is lmownw:_% It is the purpose of this
report to develop such a basic solution for a linear temperature distri-

bution defined at the edges of a truncated conical element.

r'l'he governing equations are the well-known Relssner-Meissmer shell
equations as extended by Melan and Parkus for thermal loading. These
consist of & coupled set of second order ordinary linear differential
equations. Perticular integrals are developed by means of the method
of undetermined coefficients in a polynomiel for each dependent varieble.
It is shown that the pasrticular integrals are unique and represent the
desired basic solution provided that compatible edge shears and moments
are provided at the edges of the conical frustrum. \




CEQETRY

The notation employed will be that of Fluegge Eﬂ to be consistent with

previous developments by the author (3], (51 .

’
s~ Cone wmid sorface

\\

M

S

N
Y
/\

N

S

Cone Section




TEMPERATURE DESCRIPTION

In terms of the normal coordinate Z to the shell mid-surface s measured

positive outward, a Taylor expansion of the temperature, T, above some
arbitrary stress-free datum would be,

T =

To(5)+ZT(S§+EjT1(5)+ .
-t <z «
7

Where

%: ) t = shell thickness,

Now since 1t << S, one may ignore the higher order terms and write:

T o= To(s) + 27T (s)

(1)
®

This linearization is consistent with the approximations inherent in the
Love-Kirchhoff formulation of thin shell theory.




SHELL EQUATIONS

The Reissner-Meissner equations in terms of T  and T, are R

SN F SH =N = ~t1—c°£@- sU + (1 +v) Stsr. - (2)

4 K
N e . ' 4E ) !
sTU + sU ~U :T<S&¢@X+OLST°> - (3)
Where:
X = - %;: = Meridian angle change
————E—tz = Bending rigldity
L (i-v®)
o’ = Coefficient of thermal expansion

E = Young's modulus

V = Poisson's ratio
J = AsQy 29 Tan [3 = Stress function

(.= £

Note that this definition of U differs from that of Fluegge by a factor

of --g—- . This unessential modification is due to Melan and Parkus and
t
involves the particular integral only.




TEMPERATURE CONSTANTS

Let the specified temperature dependence upon 8 be given by the following

linear expressions:

T, = As + B
T = Cs+ D

(%)

The unknown constants, A B C D, may be evaluated from temperatures

defined at the outer and inner surfaces at points s

. Tc
s =3,

T‘;
S = 54

_r'z.

= AS,+B+% (Cs,+D)

fl

As\+6~%(Csl+ 0)

t
cAs, +B + = (Cs,+ D)

:ASL+B-~E(C5L+D)

[t}

8, and s =

1 8ye

outer temperature

inner temperature

outer temperature

inner temperature




These are four equations in four unknowns,

S, I S, }
S, -
Sl | S, [
S, b -5, -

with solutions given by:

where

A = L=
AS
AT'L—ATl
ol tAS

AT

=l

1l

n

L}

c.

SLAT - s, AT™
t As

Tempereture difference

Average temperature

Slant height

10.




GOVERNING EQUATIONS

Differentiating equations (L),

and substituting these values into the Reissner-Meissner equations
(2), (3) one obtains,

STH + sH - = -tF LB Sy L (1+v) s°C

4K

U +s U -U = %(5%&%@4—@&;&)

For convenience of manipulation, define the constants.

F = L@I@_ G =« 0+V) C
4 p
(6)

Ho= 25 xp I = 2E oA




The governing equations become:
(X ' — rz/
s +su - = -FsU +Gs

¥ U +5U—U = HsxX +Ts"

(1)

(8)

This system is a set of two ordinary coupled second-order linear non-

hamogeneous differentiml equations whose camplete primgtive consists

of a fundamental set of solutions associated with the homogeneous part

and & particular integral of the non-hamogeneous equations. [6] p. 69.

HOMOGENEQUS SOLUTION

The homogencous equations are:
s +sw -x = -FsU

ST U +sU-U = H s

Define the cone operator [2] p. 196,

LG) = sGo Y Y- () , then

(9)

—  (20)

— (1)

— (2

12.




Successive operations yleld,

LL(x) =-FL(U) = -FH®
LL(Y) = HL(w) =-Fr4U
i.e
LL(X) + FHX =0
(13)
LL (L) +FHU =0
4
Now U = St?s ZZW—F: , 80 that the second equation mey
be written:
LL(sQ,) + FHsQ, = 0O — (1h)
In order to solve this equation, one may factorize the operator and
obtain the two equations:
LL(sQ¢) % L/\Lst = O — (15)
4 Et 1
= L = —_—
where A FH < @ (16)

13.




The solution of equations (15) may be obtained in terms of the Kelvin

function [2%] , ber x, bel x, ker x, kel x and thelr derivatives
employing the coordinate tramsformation,

x = 22 ds — (17)

¥ The Thompson functions guoted by Fluegge are the Kelvin function

since Thompson was also known &s Lord Kelvin.

to give,

2 el . ’l. ]
SQ, = Cl(berz,~:z \de:.x) +C7_(loe~x+z ldev‘x>
: L ) 18)
Cs(\ﬁ&\/‘%—% ‘(CL’}C\’*— C4LK£L7<. +~i Kev 7<_> (

Where Cl.‘. Ch are constants of integretion.

An identical solution for ). may be written down in terms of new

constants of integration C5 ce 08; however, the two sets of constants

are related by equations (11) and (12) and it is easier to obtain the
solution of X directly from these relatiomns.

Define the fundamental set of solutions by equetion (18),

. . L !
beulx N A b&bX‘*‘;‘Oé‘fl

il

4

vt
My = Kev w - Kec ¢ 3 Aty

i

R

el » + & Kev' %
P

Then the homogeneous solution becomes briefly,




Now from equation (12),

t  4fk.p

l —
()(. = —H—'LLU) = 4E(‘,¢¢‘\/’J; ) \—(SQS)
("
x o= L (6Q,)

Et

In order to operate on M M, we mist define L in terms of x.

_ % ¥ ax 4
S 4)\* As x dx
|9
4 g}”ﬂu(&) _A_> ﬂ‘}(__‘_i@—&——l——é—x)
AsT T x Ax x 4L > X Ax x dx

One obtains the new operator L. (., . ) from,

L)y = s "+ )Y -2 000

LG = X0 L6 =25 T = 2T

D(’L

where (., . ) = f‘ (...)

p e

The expression for X becomes:

s T
A = lé%wél_(c, be+ G+ G+ Cuu, )

15.




. vDue to the linear property of the operator, one writes:

F
5
il

- = o . g {
L( \Oev%-zbev%): "lceu)c,—';L beY‘DL :u,: = - M,

Tl = L(beln +2 her's)

il

T (¥}
bé"_?«, ——-1': \D&u v = ,IA.O (20) = Ml

— o 2,
L(‘“’s) :L(\éerx—;zkeulx): ‘\(CLx—éKCV'”X.:U-, = - My
L = L (ke L e T
L_UA-4> = 5‘1*‘32 \Acvx): \(arx-f;(_ chx:ua '-ZNJS
N T’
= 2 ' — (2
pE ‘E‘t—‘y@ (C‘KA—S‘VCLM(J +—C3»(»L7+C4bb8) (21)
. Where one has used the relations [2] p. 171
. ‘ !
bery = —locux~1 bewx, , \(:;v”gc_ = - Kel = - L Kr;v}x.
H J o
eL L = bz:\/‘x, —-&-‘ bcbu. . \{ciux =z Kerx **L \(tﬂ‘x_,

16.




PARTICULAR INTEGRAL

Turning now to the particular integral of (7) (8) and guided by the

polynomial form of the coefficients, & solution by the method of un-
determined coefficients is tried.

n o= CoxCexC 8

Co C. CL and Do D‘

constants.

D, are not related to previcusly defined

Substituting equations (22) into equation (7), one obtains,

s*(aC, ) +s (C‘+lchs) - (CotC,s +Clg‘5+ Fs (04D, s+D,s")

-Gs" = o
Equating coefficients of s,
© . -C =0 C,=o0
(sy  C -C +FD,=o0 D,= o
() LG +2C-C +FD-G=0 | 3C4FD-G =0
(s*) FD. = o D = o

1T7.




Substituting equations (22) into equation (8)

$(1D.) + < (D, +2D,5) ~ (Dy+D, s +Dys") ~He(CotC s +C,s%)

-Ts" =o0
Equating coefficlents of x,
(0\ - - Do:O DQ‘:O
(s) D,-D-HC, =0 Co= O
("), 2D,+1D -D -HC -T=o 20,-HC -T = o
(s%) -HC, = o C, = 0
The finel solution is:
C, = C,L = Do = D_L = O
D:i - 4KOL1(\+V)C C*:-—¥——:-0LA1;,W@
' F thest p | H f\
P :Cls = -—QZAS Um@ — (23)
4sQ 4RA(\+V)C
U: "_~—é'~-a/w - D S =
tr F ‘ tre b
Q, = sk (+v]cC (2

18.




One may now write the complete primatives of (7) and (8)

T, L
X = %ﬁﬁ.kc‘ug-ﬁ.CLMU+(,JLL7+C4U.8>—OLASI:~V/\’: ——(25)

‘SQ,& = C‘U_\+CluL+LJM3+C+,L\,4+d\\<S(&+\J)C “"(26)

Consider now a cone closed at the apex and extending to infinity at

the open end.

When the shell 1s closed at the apex, one cbtains the boundary conditions

C,=C,=0, [ 2] p. 198, while C, and C, are associated with stresses

vhich are non-zero only in & neighborhood of the bottom edge, i.e. in a

neighborhood of infinity.
One concludes that for values of s defined in the open interval
0 <S5 < =5

The solutions axe:

X = - odA S Tann a

, — (27)
SQ¢ = LkKs (Ivv) C

19.




UNIQUENESS

It follows, moreover, that these particular integrals are unique.

The proof is comparetively simple.

I. The complete prim'.tives are unique since the coefficients in the

differential equations (7) and (8) are mmalytic [6] p.48 and 69.

1.

The form of two primitives with different particular integrals ¢‘a.nd
¢, would be:

i

(sQ.), ¢ () + & (s)

(SQS)Q = @,lks\ﬂ- ¢ (¢)

Where @ ' and @ are the homogeneous solutioms,
2

Now since & > o | § =~ ©° vhile
\

(SQ)\ = (s Q)L " in the inmterval 0 £ S< ot

one obtains necessarily,

20.




STRESSES AND DISPLACEMENTS

From (1) one may now compute the remamining forces and displacements.

Ny = -Qstm'e = - (V) C B 8 — (28)

Ng :-(ﬁas\',z;m(b S A K (V) C i o s + N — (29)
Mo = -1k %+ 2 - (1) T

= -K [-Uw) &ALLW@ - oLU*VHCwD)}
M = oL\<U+V)LAt}mle+CS+D} — (30
My = -k [ 5 +vx -y ) T

= ok [FO) dA T - wU1ev) (Cop) |

My = J\(U+M[AM(5+C5+D] = M, — (3)
S S
W:—Q){,&S :*(—QAEM,‘Q'SOLS
o 6 |
- ol A S’L&/"Vé — (32)
PR \

21.
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A is positive in the direction of Z.
n is positive vwhen the rotation is as

shown in the sketch.

wr (P esh“\'\/c)

X/(\;os;‘\’;va>

22.




‘ CONICAL FRUSTRUM

If a conical frustrmum "free body" is isolated from the infinitely long

cone and loaded by reactive edge loeds of magnitude,

N, = -e<\<(\+v\cm@
Q, = 4 (V) C
M = ok1<(\+v)QAz;W(g+cs+D)

at the top and bottom edges, and having edge deformations glven by,

%:"JASMQ
. ,
_ o,A
AR = X S /&wu(é

it is clear that the solution presented in this report will satisfy
these losding and edge conditions and will consequently represent the
required basic conical element required for incorporation in an extended
version of SM-38500.

23'




One small detail is to be observed in such a formulation. Edge loads
in SM-38500 are input &s & line load perpendicular to the axis of
rotation. The relation between such an edge loed and I\IB s Qs is shown

below.

ik (V+v) C

X = - Qm@ — (33)

2h.
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